Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star

The University of Dublin

Vidotto & Donati (2017, A&A, 602, 39)

The newborn Sun: V830 Tau

2

(Exo)planetary radio emission from stellar windplanet interactions

Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star

Credit: NASA

(Exo)planetary radio emission from stellar windplanet interactions

Aline Vidotto 4

How do we characterise stellar winds?

Magnetic field from observations

 +
 +
 +
 +

 +
 +
 +
 +

 +
 +
 +
 +

 +
 +
 +

 +
 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +
 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +</t

 \sum

<u>Initial state</u>: potential field incorporated in MHD simulations

→ more on the technique &
 other objects: Vidotto+09a,
 10ab,11a,12,14a,15; etc

<u>Final state</u>: self-consistent MHD wind solution

(BATS-R-US)

Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star

How to estimate exoplanetary radio emission

 From wind simulations → calculate the strengths of the physical interactions between the wind of the star and the hot Jupiter

incident stellar
$$\simeq \frac{B_{\perp}^2}{4\pi} (\Delta u) \pi r_M^2$$
,

• Then, we compute the radio flux:

$$\phi_{\rm radio} \propto P_{\rm radio}/{\rm distance}^2$$

r_M: Planet's magnetosphere

Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star

Characteristics of the planet's magnetosphere

Vidotto & Donati 17

Vidotto & Donati 17

Wednesday, 12 July 17

Radio flux density of the stellar wind

- Observations (even if only non-detections) allow us to place an upper limit in massloss rates: M<3x10⁻⁹ M₀/yr
- Best estimates: the wind of V830Tau should have M ~ [10⁻¹²,10⁻¹⁰] M_☉/yr

Note: Wind emission is a lot smaller than exoplanet's emission: ~44 mJy at ~18MHz (B_p=10G)

Villadsen+14, Fichtinger+17

Panagia & Felli 75, Guedel 02,

Can planetary emission "escape" the stellar wind?

• The planetary radio emission can only propagate in the stellar wind plasma if the frequency of emission Ω_c is larger than the stellar wind plasma frequency ω_p .

$$B(\alpha_0) > \left(\frac{n_e}{10^5 \text{ cm}^{-3}}\right)^{1/2} \text{G},$$

planetary radio emission
 can propagate through the
 stellar wind if the planetary
 magnetic field strength is
 <1.3 – 13 G .

Summary and Conclusions

- 3D MHD simulations+ZDI maps used to describe the wind of V830Tau
- Wind-planet interaction: radio emission from the planet (if magnetised)
 - Predicted radio emission:
 - ➡6mJy for R_p=R_{jup} (peaks at ~11mJy)
 - →24mJy for R_p=2R_{jup} (peaks at ~44mJy)
 - ⇒ frequency of emission \propto B_p: from 18 to 240 MHz for B_p=[10,100] G
- Dense winds can produce free-free emission at radio wavelengths. Wind emission (<µJy) is much smaller than planet emission though.
 - Important upper limit on wind mass-loss rates: M
 <3x10⁻⁹ M_☉/yr
 - ▶ Best estimates: M ~ [10⁻¹²,10⁻¹⁰] M_☉/yr
- Planet orbit is at $6R_{star} \rightarrow even$ after attenuation, a significant fraction of the planetary radio flux can escape (note thought that $B_p > 1.3 13$ G)

Predicting radio emission from the newborn hot Jupiter V830 Tau b and its host star